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Full Wave Analysis of Microwave Monolithic

Circuit Devices Using a Generalized

Yee-Algorithm Based on an Unstructured Grid
Stephen D, Gedney, Faiza S. Lansing, and Daniel L. Rascoe

Abstract— A generalized Yee-algorithm is presented for the

temporal full-wave analysis of microwave monolithic integrated
circuit (MMIC) devices. This algorithm has the significant ad-

vantage over the traditional Yee-algorithm in that it is based on
unstructured and irregular grids. Thus, using the generalized
Yee-algorithm, MMIC devices that contain curved conductors
or complex geometries can be more accurately and conveniently
modeled using standard automatic grid generation techniques.
The generalized Yee-algorithm is based on the time-marching so-
lution of the discrete form of Maxwell’s equations in their integral

form. A correction scheme is introduced that is stable, maintains

second-order accuracy, and maintains the divergeuceless nature
of the flux densities. Furthermore, by structuring the algorithm

as a series of sparse matrix-vector multiplications, the generalized

Yee-algorithm can be efficiently implemented on vector or parallel
high performance computers.

I. INTRODUCTION

T RADITIONALLY, microwave monolithic integrated cir-

cuits (MMIC’s) have been analyzed using approximate

techniques based on planar circuit concepts and transmission

line models. While these models do provide very accurate

analysis of MMIC’s at lower frequencies, at higher frequencies

such methods do not accurately account for the increasingly

significant affects of field fringing, coupling, nonlinearities and

radiation. In order to fully account for these phenomena, a full

wave analysis becomes necessary:

The finite-difference time-domain (FDTD) method, based

on the traditional Yee-algorithm [1], has been successfully

applied to the analysis of both active and passive planar

rnicrostrip circuits and MMIC’s [2]–[5]. The FDTD method

is highly efficient and very well suited for many problems of

interest, however, it has some significant limitations. Curved

structures, such as the power divider illustrated in Fig. 1,

must be modeled using a staircase-type approximation. To

reduce the discretization error associated with such approx-

imations, the mesh must be highly refined. Furthermore,
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Fig. 1. Wilkinson power divider at ka-band (32 GHz).

modeling must often be done manually. These issues have

motivated the development of new techniques based on non

orthogonal and unstructured grids [6-9]. Earlier work [6],

[7] expressed the FDTD in curvilinear coordinates. A more

robust technique introduced by J.-F. Lee, [8], [9], assumes

a locally curvilinear coordinate system for each cell of an

irregular structured grid. This is efficiently accomplished by

introducing the local covariant and contravariant projections

associated with each grid cell approximating each grid cell as

a parallelepiped.

Unfortunately, none of the above treatments can be applied

to a general unstructured grid. Other methods to treat more

general grid structures have recently been introduced. In [10],

Rappaport and Smith use a grid based on triangular pyramids.

Second-order accuracy can be exactly maintained providing

the interior angles of the triangular faces are 60° and the

rectangular faces are orthogonal to the triangular faces. In

[11], Holland introduced another technique for treating more

general grid structures. They demonstrated a method in two-

dimensions (2–D) based on a local expansion of the field into

an orthogonal basis.

More generalized techniques were recently presented by

Madsen and Ziolkowsld in [12] and by Madsen in [13]. In [13]

Madsen addresses a technique based on unstructured grids, and

seeks a correction scheme with second-order accuracy despite

the grid irregularity. The stability of the solution after very

large uumber of time iterations is found to be highly dependent

upon the accuracy of the correction scheme. In [13], Madsen

presents a correction scheme, which projects the normal fields
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Fig. 2. Unstructured dual grid cells.

onto the grid edges, maintains second-order accuracy and is

numerically stable.

Influenced by the recent work of Madsen [13], an ef-

ficient means has been developed for treating the three-

dimensiomd (3-D) problem based on unstructured grids that

provides a second-order accurate solution. This algorithm

is referred to here as the generalized Yee-algorithm [14].

Madsen’s correction scheme in [13] is used to project the

normal fields onto the grid edges, yet, it is implemented

such that the memory requirements for the correction term

are reduced, while still maintaining the divergenceless na-

ture of the approximate field. The algorithm treats the time

stepping iterations of the generalized Yee-algorithm as a

series of matrix-vector multiplications, leading to an efficient

algorithm that is vectorizable and has a high degree of par-

allelism.

In this paper, the development of the generalized Yee-

algorithm is introduced in Section II, modeling lumped loads

directly with Maxwell’s equations is discussed in Section III,

the computationally efficient implementation of the gener-

alized Yee-algorithm is discussed in Section IV, and some

numerical examples based on this method are described in

Section V.

II. GENERALIZED YEE-ALGORITHM

The generalized Yee-algorithm is based on a direct solution

of Maxwell’s equations in their integral form within a closed

3-D volume. The electric and magnetic fields are discretized

over a dual grid structure formed by a primary alnd secondary

grid, as illustrated in Fig. 2. The primary grid is composed

of general fitted polyhedra distributed throughout the volume.

The secondary grid (or dual grid) is built up of the closed

polyhedra whose edges connect the centroids of adjacent pri-

mary cells, penetrating shared faces. Fig. 2 illustrates adjoining

primary and secondary grid cells that are hexahedron. Along

each edge of the primary grid cells, an electric field vector

is defined. Similarly, a magnetic field vector is located along

each secondary grid cell edge.
Faraday’s Law and Ampre’s Law are approximated by

discretizing the surface and line integrals over each primary

grid cell face and secondary grid cell faces, respectively. The

fields are assumed to be constant over their respective faces

and along each edge. The time derivative is then approximated

using a central difference approximation. This leads to the

discrete form of Faraday’s and Ampre’s Laws, respectively

where the superscripts indicate the time index, lVe$ is the

number of edges bounding the i-th face of the primary grid

[in (la)] or the secondary grid [in (lb)], Ai is the area of the

i-th face, ii, and ii, are the unit normals to the primary and

secondary grid faces, respectively, IZj and .3” are the length

vectors of the j-th edges bounding the primary and secondary

grid faces, respectively, and S.v, and o.”, are derived in

Appendix A.

The field solution is obtained from (la) and (lb) resulting

in the explicit time stepping algorithm

(2b)

If the fields are discretized over a regular orthogonal rect-

angular grid, (2a) and (2b) reduce to the traditional Yee-

algorithm. For general unstructured grids, (2a) and (2b) pro-

vide a more general approximation for the fields, However,

before proceeding, it is recognized that for a general unstruc-

tured and non orthogonal grid, it cannot be said that h, = .4or

ii. = @.More specifically, the magnetic flux density normal to

the primary grid face is updated in (2a). However, the update

of the electric flux density in (2b) requires the projection of the

magnetic field onto a dual edge. Since it cannot be assumed

that iiP = ;, the normal field must be projected onto the

complimentary grid edge. Since the normal field alone cannot

uniquely describe the edge component, a secondary expression

must be introduced to perform the projection.

To uniquely project the magnetic field onto the secondary

grid edge it is necessary to perform an interpolation of the
magnetic flux densities normal to local adjacent faces. This

must be done such that: 1) the flux projected onto the edges

must also be divergenceless in charge free medium, and 2) the

time stepping algofithm must maintain stability. To this end,

a correction scheme similar to Madsen’s in [13] which meets

these criterion is used here. The most significant difference

between the current approach and Madsen’s approach is that

Madsen interpolates the time rate of change of the flux density,

whereas, here the flux density is interpolated. This leads to an
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Fig. 3. Primary grid face with normal vector fiP penetrated by dual edge
dwected atong the unit vector ~.

efficient computational implementation of the algorithm, as

discussed in Section IV.

Assume that each face is shared by N. cells (where NC = 2

or 1). Each face is also assumed to be bound by N. edges

which connect N. vertices. Referring to Fig. 4, assume that

the i-th vertex is shared by three faces of the j-th cell.

Equation (2a) is used to update the normal magnetic flux

densities passing through each face. Then, the magnetic flux

density associated with the i-th vertex and the j-th cell can be

computed by solving the 3 x 3 system of equations

I%@p=l%i%

where the ~p are the area vectors normal to each primary

grid face. Since the right-hand-side is known from (2a), (3)

is used to solve for the three orthogonal components of ~i, ~,

Subsequently, this is performed for each of the vertices of the

face (i = 1, N.) and for each cell (j = 1, NC) shared by the

face. At this point it is noted that ~i,j is not an interpolation

for the total field, but rather a local value associated with the

i, j-th corner shared by the face. The magnetic flux density

vector over the face is then expressed by the interpolation

where the weighting factors are computed by the triple scalar

product

w~,j = ip . (lVpt,j x iipt+l, j). (5)

Finally, given the magnetic flux density in (4), it can be

uniquely projected onto the secondary cell edge via the dot

product ~ .3.

It cart be shown that the interpolated ~ in (4) satisfies

Gauss’s Law in discrete form. To this end, consider the

magnetic flux density at the current and the previous time

steps. Then

At
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Fig. 4. Adjacent primary grid cells sharing common face with magnetic
fields normal to each face known.

(6)

where V is the volume of the primary cell. From Stoke’s

theorem and Faraday’s law, the right-hand-side of (6) is

expressed as

(7)

where, S is the surface bounding the cell volume V, S’i is the

i-th face of the cell, and C, is the contour bounding S’i. The

expression is zero since the edges of the cell are traversed

twice in opposing directions when evaluating the line integral.

Since this is true for each ~ the argument can be extended for

the ~ appearing in (4). Finally, assuming that the initial value

of ~ is divergenceless throughout the volume, then from (6)

and (7), it can be stated that

(8)

By duality, the displacement flux density is projected onto

the primary grid edges using

N,. N.

It can be shown that the displacement flux density in (9)

also satisfies the discrete form of Gauss’s Law. Finally, the

field updates can be performed by computing the vector fields

normal to the primary or secondary grid faces using (2a) or

(2b), then project them onto the edges of the secondary or

primary grids using (4) or (9), respectively. By introducing the

correction terms in (4) and (9) it can be shown that second-

order accuracy of the algorithm is maintained, assuming that
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the time increment At satisfies the Courant stability criterion.

The exact stability criterion would require an eigenvalue

analysis of the combined update expressions in (2a), (2b), (4)

and (9) in [8]. Unfortunately, this will be problem dependent

due to the unstructured nature of the grid. Through numerical

experimentation, however, a relationship has been established

which provides an excellent estimate of the stability criterion

for tetrahedral, pentahedral and hexahedral elements

At<
1

[1
(lo)

c sup $;

where, c is the speed of light, and the & (i = 1,3) are three

edges in each cell sharing a common vertex. This expression

provides an accurate estimate for the time step that is in general

within 10% of the actual stability criterion. It is observed from

(10) that the time step will be bound by the smallest edge

length in the model.

The greatest strength of the above technique is that it

is based on general, unstructured grids, and thus can be

applied to problems with complex 3-D geometries. Further-

more, this method is well suited for the large variety of

commercially available automatic numerical grid generation

software packages for modeling and meshing the geometry.

One disadvantage, however, is that since the grid is unstruc-

tured and irregular, the numerical grid must be stored (this

is not required for the regular grid-based FDTD method).

Second, it would appear that either a significant number of

floating point operations will be required during each time

iteration (e.g., to compute the area of each face, the unit

normals, the edge vectors, the weighting factors, etc.), or much

more memory will be needed to store most of these parameters.

In Section IV, techniques are introduced that minimizes both

the floating point operations and vastly reduces the memory

requirements of the generalized Yee-algorithm.

III. LUMPED LOADS

To accurately model hybrid and integrated planar mi-

crowave circuits, it is necessary to include lumped circuit

elements. Using general voltage-current relationships of

lumped circuit elements it is possible to model the interaction

of the fields with lumped circuits directly with Maxwell’s

equations.

From the generalized current concept [15], Ampere’s Law

is expressed as

where ld is the displacement current, IC is the conduction

current, and 11 is the lumped current through the lumped

element. The voltage along any primary grid edge of the model

will be locally approximated by the line integral of the electric

field along the edge. If the electric field is known at the present

time step, then the lumped current along the edge can be

simply expressed through the voltage-current relationship of

the lumped element

(12)

Consider the linear, passive elements R1 (resistor), Cl (capac-

itor), and LL (inductor). If each of these were placed along a

primary grid edge, the lumped current induced through these

elements would be expressed as

~n+l/2 _ F’”(En+l+‘n)
1~ — 2R1 ‘

I;’llZ _ ~l$. (/j”+l
– J&)

—
At ‘

Based on this relationship, discrete elements can be directly

incorporated into (2b), where, 1~+1’2 = A, J~+l’2 . ii. for

the i-th edge.

IV. ENHANCING COMPUTATIONAL EFFICIENTLY

The generalized Yee-algorithm has the potential to be com-

putationally expensive and memory intensive. However, if it

is treated in the appropriate fashion, the algorithm can be

employed very efficiently. To this end, the generalized Yee-

algorithm can be thought of as a series of linear operations

acting on the fields that are normal to the primary and the

secondary grid faces. These linear operations can be expressed

in their discrete form simply as matrix-vector multiplications.

For example, consider (2a). The line integral can be expressed

as a sparse matrix. The i-th row of the matrix has identically

N.z nonzero column elements. Since all zero row elements

have no contribution only the nonzero elements need be stored.

Subsequently, (2a) can be expressed as

bn = b. – AhA,Cd. (14)

where bn is the vector of magnetic fluxes normal to each

primary grid cell face, dn is the vector of electric fluxes normal

to the secondary grid faces, Ah is a sparse matrix representing

the line integral in (2a), and A.C is a sparse matrix of order

representing the projection operation in (9). Similarly

dn = Dedn – A.Ahcbn (15)

where Dc is a diagonal matrix derived from the self term in

(2b), A. is a sparse matrix representing the line integral in

(2b), and Ah. is a sparse matrix derived from the projection

operator in (4).

The number of nonzero entries AhC and A.C will be de-

pendent upon the number of faces used in the interpolation in

(4) and (9), respectively. For example, from (4), there will be

NCN. +- 1 nonzero entries in each row of AhC, where NC and

N. are dependent upon the local mesh characteristics. Each

row entry is then derived explicitly from (3)–(5). To this end,

the left-hand side of (3) can be represented by a 3 x 3 matrix

[A] times the vector unknown representing ~i,j, where the

three rows of [A] represent the z, y, and z components of
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fip, fip,,,, and @p%+I,,, respectfully. Subsequently, the local

interpolated field is then solved as

Then, letting [C] = [A]-:
follows that

[wi,j@;,j .3 = Iwi,j[{[cllsz + C21SV + C31SZ]B “ NP

+ [C12SX + %2SrI + C32%]~ “ ~P,,j

+ [C13& + @3Sy + C33Sz]~ “ fiP.+1,3 } (17)

where the Cij represent the elements of [C]. The entry in

(17) weighting ~ . ~p will contrib~te lo the dia~ona~ term

of AhC, and the entries weighting B . NP%,Jand B . Np,+l ,j
will contribute to the off diagonal terms. Then, summing over

all z and j in (4), each row entry in Ah, can be assembled. It is

noted that in any region where the grid is orthogonal , the off-

diagonal elements of Ah. will be zero, and the diagonal term

will be unity. This virtue can easily be exploited to conserve

memory.

The sparse matrices in (13) and (14) need only be computed

once and then stored using a compressed storage scheme.

Subsequently, each time iteration consists of a set of matrix-

vector multiplications, which are very computationally ef-

ficient and are easily parallelizable. A remaining issue is

the efficient construction of these matrices. This is accom-

plished by constructing the matrices on a cell-by-cell basis. To

this end, the secondary grid is never specifically constructed

since there is sufficient information to construct the matrices

A., Ah, De, Aec, and Ahc from the primary grid cells alone.

Subsequently, the matrices can be assembled by scanning

through all the cells sequentially.

V. NUMERICAL EXAMPLES

A computer program based on the generalized Yee-

algorithm has been implemented on the 512-node Intel

Delta Supercomputer located at the California Institute of

Technology. It has also been implemented on an iPSC/860

hypercube, JPL’s CRAY-YMP, an SGI Power Challenge and

an HP workstation (note that porting the code to these other

platforms only required changing the paths of I/O files). The

program was interfaced with a commercial CAD software

package (SDRC I-DEAS) to generate the circuit models and

the primary grid. When the circuits are situated in unbounded

regions, the discretization volume is truncated by planar

boundaries. A second-order accurate absorbing boundary

condition (ABC) based on the dispersive boundary condition

[16] is used to update the fields on the truncation boundary

walls, minimizing any nonphysical reflections (this results in

< –40 dB reflection error across the entire bandwidth). It is

noted that the mesh in the immediate vicinity of the exterior

boundaries must be orthogonal for this ABC to be stable.

This is done automatically by the software by extending an

orthogonal mesh out from the initial unstructured mesh created

by the automatic mesh generator, The mesh is then spatial] y

Fig. 5. Cross section of unstructured mesh used to discretize the W&inson

power divider.
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Fig. 6. S-parameters of Witkinson power divider computed using the gen-

eralized Yee-algorithm using an unstructured grid and an FDTD atgorithm
using a regular orthogonal grid.

decomposed into contiguous subregions using the recursive

inertia partitioning algorithm [17] (this decomposition is done

in a manner that equal] y distributes the faces and edges of the

primary grid among all subregions). Once the simulation is

completed, one can extract data to compute the S-parameters,

characteristic impedances and propagation constants. The

computation of these parameters is done in the manner outlined

in [2]. One can also visualize the interaction of the electric and

magnetic fields in the device as a function of time. This alone

has been extremely helpful to identify sources of radiated
fields, coupling and resonances.

The computer program has been extensively validated

through comparison with other numerical methods and

published results. One such validation was the Wilkinson

power divider illustrated in Fig. 1. The power divider is

printed on a 15 mil TMM substrate (e. = 3.25). The input
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TABLE I

CPU TIMES RECORDEDON AN iPSC/860 FORTHE GENERALIZED YEE-ALGORITHM WILKINSON POWER DIVIDER

Platfortn 1 Proc. 2 Proc. 4 Proc. 8 Proc. 16 Proc. 32 Proc.

Gen. Yee 2427 S 1285 S 674 S 373 s 225 S 137 s

FDTD 2275 S 1194s 680 s 404 s 230 S 151 s

and output ports are 50 Q (the strip width is 36 roil). For

isolation, a 100 Q chip resistor is placed across the apex of

the power divider. This was modeled as a lumped load, as

described in Section III. The input port was excited with a

time varying Gaussian pulse with a bandwidth of 42 GHz.

The volume enclosing the power divider was discretized using

general hexahedron. A cross-section of the mesh in the plane

of the microstrip line is illustrated in Fig. 5, A time step of

0.14 ps was used for the simulation, and required only 3000

time steps.

The first row of the scattering matrix of the Wilkinson

power divider computed using the generalized Yee-algorithm

is plotted versus frequency in Fig. 6. These results were

obtained from a single time-domain simulation and an FFT

was used to compute the frequency domain signals. The two

output ports carry equal power, and are exactly in phase (not

shown here). These results are compared with results obtained

using a FDTD simulation based on an orthogonal regular

lattice (details of this program are described in [18]),

The 3-D mesh modeling the Wilkinson power divider con-

sisted of 65824 hexahedron. This leads to roughly 412200

degrees of freedom. The CPU times required to perform 3000

iterations on an iPSC/860 are recorded in Table I. These are

also compared with the CPU times required by the FDTD

algorithm. The FDTD lattice had a dimension of 107x 81 x 23,

where dz = dy = 0.114681 mm, d.z = 0.06350 mm, and

dt = 0.14 ps. The FDTD algorithm was also executed for 3000

time iterations. For this small example, the FDTD algorithm

and the generalized Yee algorithm have comparable CPU

times. Interestingly, the generalized Yee algorithm has slightly

better speedups as the number of processors is increase. This

is due to the fact that as the problem size on each processor

gets smaller, the CPU speed per processor decreases for the

FDTD code as the vector lengths decrease [18], On the other

hand, due to indirect addressing, the generalized Yee algorithm

is not as efficient on a pipelined processor, and the CPU

speed per processor is fairly constant as the problem size

decreases.

Fig. 7 illustrates a Gysel power divider (3 dB, in-phase).

This divider is tuned to 34 GHz and is designed to be quite

broad band. It is printed on a 10 mil Alumina substrate

(s. = 9.9) and its ports are 50 Q microstrip lines (a width
of 9.9 roil). Isolation is provided by two 100 Q branches

that are terminated by a 50 Q series resistance and a vertical

connection to the ground plane. The first row of the scattering

matrix over a broad band for this device using the generalized

Yee-algorithm is illustrated in Fig. 8. The 3-D mesh modeling

the Gysel power divider consisted of 353980 hexahedron,

leading to roughly 2 million degrees of freedom. The solution

required time 8,000 iterations (dt = 0.05 ps) which required

2,272 CPU-see to solve on 16 processors of an Intel iPSC/860

8, AUGUST 1996

Port 2

.2515 mm
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Fig. 7. Gysel power divider printed on a 10-mil Alumina substrate
(Cr = 9.9).

(1,256 CPU-see on 32 processors). The results in Fig. 8 are

also compared to those obtained using the FDTD method. The

FDTD lattice had a dimension of 397x 253 x 23, where dx =
0.0239165 mm, dy = 0.0247164 mm, dz = 0.04233333

mm, and dt = 0.05 ps. This was the largest mesh size

found that would provide an accurate model of the complex

geometry using an orthogonal grid. The FDTD algorithm was
also executed for 8,000 time iterations, and required 3,792

CPU-see to solve on a 16 processor iPSC/860 (2,232 CPU-

sec on 32 processors), which is roughly twice the CPU time

as compared to the generalized Yee algorithm. Due to the

regularity of the FDTD grid, the modeling task was also much

more time consuming. Even though we have automated this

task, it is still difficult to realize an accurate description of

complex geometries, such as the Gysel power divider, using

a regular orthogonal grid. Furthermore, to accurately model

structures with highly detailed geometries, highly refined grids

become necessary, which impacts the global grid size of the

FDTD algorithm and subsequently the CPU time and memory

requirements.

VI. SUMMARY

In this paper, the generalized Yee-algorithm has been pre-

sented. The algorithm is an explicit time-marching method
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Fig. 8. S-parameters of Gysel power divider using the generstized
Yee-algorithm.

based on the discretization of Maxwell’s equations in their

integral fopn using unstructured and irregular dual grids. This

algorithm is much more robust than the traditional FDTD

method in that it can be used to accurately model MMIC

devices with much more general geometries. Furthermore, by

treating the time-marching algorithm as a series of matrix vec-

tor multiplications, the algorithm is ideal for implementation

on high performance parallel computers.

It is anticipated that the generalized Yee-algorithm will be

a robust and computationally efficient tool for the analysis

of microwave monolithic integrated circuits, and can readily

exploit the scalable massively parallel high performance com-

puters of the future for the solution of electrically large and

dense MMIC devices.

APPENDIX A

In this Appendix, the average permittivity and conductivity

of a secondary cell face is computed. Consider the face,

defined as the surface S and bound by the contour C, of

a secondary cell of an irregular and unstructured grid, e.g.,

Fig. 9. It is assumed that the edge passes through the centroid

of the face and is tangential to the interface of bound-

ary shared by the four materials (c1, al ), (s2, CTZ),(s3, 03),

and (SA, al). In discrete form, Amp?e’s law is undefined

since the perrnittivity of the face is ambiguous as referenced

to the electric field passing through it’s centroid. Subse-

quently, the surface of integration can be decomposed to

four distinct surfaces, each with constant permittivity s~(i =

1,2,3, 4). Thus in discrete form, Amp&re’s law is expressed

as

(Al)

where, Si is the surface of each subarea that is bound by the

contour Ci. Over each Si, we have

(A2)

It is assumed that l?~. ii in each subcell (i = 1,2,3,4) is tan-

gential to the boundary interface, then it can be approximated

that

It is noted that this is in general a good approximation since

the numerical grid is constructed such that the edge through

the center of the secondary cell face must be tangential to the

boundary surface. Subsequently, it is assumed that the edges

extending above or below the boundmy interfaces are close to

normal. Then, adding the four equations in (A 1) results in

(zn+:~gn). fi(&IAI + E2J42 + E3A3 + &4A4):

‘(En+12T”h(01A’+02A2

+ 03A3 + rT4A4);

[
= /?+1. Iiy/2 + & . 17y2

+ 13. @+l’2 – Z4 . fi:+112 1
where, A is the total face area. Subsequently, an

permittivity and conductivity are introduced where

(A4)

average

(A5)

where N. is the number of subregions and A = f Ai t
;=1
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