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Full Wave Analysis of Microwave Monolithic
Circuit Devices Using a Generalized
Yee-Algorithm Based on an Unstructured Grid

Stephen D. Gedney, Faiza S. Lansing, and Daniel L. Rascoe

Abstract— A generalized Yee-algorithm is presented for the
temporal full-wave analysis of microwave monolithic integrated
circuit (MMIC) devices. This algorithm has the significant ad-
vantage over the traditional Yee-algorithm in that it is based on
unstructured and irregular grids. Thus, using the generalized
Yee-algorithm, MMIC devices that contain curved conductors
or complex geometries can be more accurately and conveniently
modeled using standard automatic grid generation techniques.
The generalized Yee-algorithm is based on the time-marching so-
lution of the discrete form of Maxwell’s equations in their integral
form. A correction scheme is introduced that is stable, maintains
second-order accuracy, and maintains the divergenceless nature
of the flux densities. Furthermore, by structuring the algorithm
as a series of sparse matrix-vector multiplications, the generalized
Yee-algorithm can be efficiently implemented on vector or parallel
high performance computers.

1. INTRODUCTION

RADITIONALLY, microwave monolithic integrated cir-

cuits (MMIC’s) have been analyzed using approximate
techniques based on planar circuit concepts and transmission
line models. While these models do provide very accurate
analysis of MMIC’s at lower frequencies, at higher frequencies
such methods do not accurately account for the increasingly
significant affects of field fringing, coupling, nonlinearities and
radiation. In order to fully account for these phenomena, a full
wave analysis becomes necessary:

The finite-difference time-domain (FDTD) method, based
on the traditional Yee-algorithm [1], has been successfully
applied to the analysis of both active and passive planar
microstrip circuits and MMIC’s [2]-[5]. The FDTD method
is highly efficient and very well suited for many problems of
interest, however, it has some significant limitations. Curved
structures, such as the power divider illustrated in Fig. 1,
must be modeled using a staircase-type approximation. To
reduce the discretization error associated with such approx-
imations, the mesh must be highly refined. Furthermore,
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modeling must often be done manually. These issues have
motivated the development of new techniques based on non
orthogonal and unstructured grids [6-9]. Earlier work [6],
[71 expressed the FDTD in curvilinear coordinates. A more
robust technique introduced by J.-F. Lee, {8], [9], assumes
a locally curvilinear coordinate system for each cell of an
irregular structured grid. This is efficiently accomplished by
introducing the local covariant and contravariant projections
associated with each grid cell approximating each grid cell as
a parallelepiped.

Unfortunately, none of the above treatments can be applied
to a general unstructured grid. Other methods to treat more
general grid structures have recently been introduced. In [10],
Rappaport and Smith use a grid based on triangular pyramids.
Second-order accuracy can be exactly maintained providing
the interior angles of the triangular faces are 60° and the
rectangular faces are orthogonal to the triangular faces. In
[11], Holland introduced another technique for treating more
general grid structures. They demonstrated a method in two-
dimensions (2-D) based on a local expansion of the field into
an orthogonal basis.

More generalized techniques were recently presented by
Madsen and Ziolkowski in [12] and by Madsen in [13]. In [13]
Madsen addresses a technique based on unstructured grids, and
seeks a correction scheme with second-order accuracy despite
the grid irregularity. The stability of the solution after very
large number of time iterations is found to be highly dependent
upon the accuracy of the correction scheme. In [13], Madsen
presents a correction scheme, which projects the normal fields
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onto the grid edges, maintains second-order accuracy and is
numerically stable.

Influenced by the recent work of Madsen [13], an ef-
ficient means has been developed for treating the three-
dimensional (3-D) problem based on unstructured grids that
provides a second-order accurate solution. This algorithm
is referred to here as the generalized Yee-algorithm [14].
Madsen’s correction scheme in [13] is used to project the
normal fields onto the grid edges, yet, it is implemented
such that the memory requirements for the correction term
are reduced, while still maintaining the divergenceless na-
ture of the approximate field. The algorithm treats the time
stepping iterations of the generalized Yee-algorithm as a
series of matrix-vector multiplications, leading to an efficient
algorithm that is vectorizable and has a high degree of par-
allelism.

In this paper, the development of the generalized Yee-
algorithm is introduced in Section II, modeling lumped loads
directly with Maxwell’s equations is discussed in Section III,
the computationally efficient implementation of the gener-
alized Yee-algorithm is discussed in Section IV, and some
numerical examples based on this method are described in
Section V. '

II. GENERALIZED YEE-ALGORITHM

The generalized Yee-algorithm is based on a direct solution
of Maxwell’s equations in their integral form within a closed
3-D volume. The electric and magnetic fields are discretized
over a dual grid structure formed by a primary and secondary
grid, as illustrated in Fig. 2. The primary grid is composed
of general fitted polyhedra distributed throughout the volume.
The secondary grid (or dual grid) is built up of the closed
polyhedra whose edges connect the centroids of adjacent pri-
mary cells, penetrating shared faces. Fig. 2 illustrates adjoining
primary and secondary grid cells that are hexahedron. Along
each edge of the primary grid cells, an electric field vector
is defined. Similarly, a magnetic field vector is located along
each secondary grid cell edge.

Faraday’s Law and Ampre’s Law are approximated by
discretizing the surface and line integrals over each primary
grid cell face and secondary grid cell faces, respectively. The
fields are assumed to be constant over their respective faces
and along each edge. The time derivative is then approximated
using a central difference approximation. This leads to the
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discrete form of Faraday’s and Ampre’s Laws, respectively
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where the superscripts indicate the time index, V., is the
number of edges bounding the i-th face of the primary grid
[in (1a)] or the secondary grid [in (1b)], A; is the area of the
i-th face, i, and 71, are the unit normals to the primary and
secondary grid faces, respectively, p; and §; are the length
vectors of the j-th edges bounding the primary and secondary
grid faces, respectively, and ¢,,, and o, are derived in
Appendix A.

The field solution is obtained from (1a) and (1b) resulting
in the explicit time stepping algorithm
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If the fields are discretized over a regular orthogonal rect-
angular grid, (2a) and (2b) reduce to the traditional Yee-
algorithm. For general unstructured grids, (2a) and (2b) pro-
vide a more general approximation for the fields. However,
before proceeding, it is recognized that for a general unstruc-
tured and non orthogonal grid, it cannot be said that 7, = § or
fis = p. More specifically, the magnetic flux density normal to
the primary grid face is updated in (2a). However, the update
of the electric flux density in (2b) requires the projection of the
magnetic field onto a dual edge. Since it cannot be assumed
that 7, = 3, the normal field must be projected onto the
complimentary grid edge. Since the normal field alone cannot
uniquely describe the edge component, a secondary expression
must be introduced to perform the projection.

To uniquely project the magnetic field onto the secondary
grid edge it is necessary to perform an interpolation of the
magnetic flux densities normal to local adjacent faces. This
must be done such that: 1) the flux projected onto the edges
must also be divergenceless in charge free medium, and 2) the
time stepping algorithm must maintain stability. To this end,
a correction scheme similar to Madsen’s in [13] which meets
these criterion is used here. The most significant difference
between the current approach and Madsen’s approach is that
Madsen interpolates the time rate of change of the flux density,
whereas, here the flux density is interpolated. This leads to an
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Fig. 3. Primary grid face with normal vector 7, penetrated by dual edge
directed along the unit vector 3.

efficient computational implementation of the algorithm, as
discussed in Section IV.

Assume that each face is shared by N, cells (where N, = 2
or 1). Each face is also assumed to be bound by N, edges
which connect N, vertices. Referring to Fig. 4, assume that
the i-th vertex is shared by three faces of the j-th cell.
Equation (2a) is used to update the normal magnetic flux
densities passing through each face. Then, the magnetic flux
density associated with the i-th vertex and the j-th cell can be
computed by solving the 3 x 3 system of equations

B;;-Np=B-Np
B;iNp,,=B-Np,,
B,j'NPL+1J —B-Np”d 3)

where the Np are the area vectors normal to each primary
grid face. Since the right-hand-side is known from (2a), (3)
is used to solve for the three orthogonal components of ﬁi, e
Subsequently, this is performed for each of the vertices of the
face (i = 1, N,) and for each cell (j = 1, N.) shared by the
face. At this point it is noted that Ei,] is not an interpolation
for the total field, but rather a local value associated with the
1, j~th corner shared by the face. The magnetic flux density
vector over the face is then expressed by the interpolation

ZZ'“’W‘B 1,4

B = Jj=1i=1 4)
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where the weighting factors are computed by the triple scalar
product

wi; = Np-(Np, x Np, ). &)

Finally, given the magnetic flux density in (4), it can be
uniquely projected onto the secondary cell edge via the dot
product B3

It can be shown that the interpolated B in (4) satisfies
Gauss’s Law in discrete form. To this end, consider the
magnetic flux density at the current and the previous time
steps. Then
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Fig. 4. Adjacent primary grid cells sharing common face with magnetic
fields normal to each face known.
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where V' is the volume of the primary cell. From Stoke’s
theorem and Faraday’s law, the right-hand-side of (6) is

expressed as
= Z / o8 d3,

/V oB qV = j[j{(’)B
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where, S is the surface bounding the cell volume V, S; is the
i-th face of the cell, and C, is the contour bounding S; . The
expression is zero since the edges of the cell are traversed
twice in opposing directions when evaluating the line integral.
Since this is true for each B the argument can be extended for
the B appearing in (4). Finally, assuming that the initial value
of B is divergenceless throughout the volume, then from (6)
and (7), it can be stated that

j{]{ Brtl/2 . gz =0, (®)
S

By duality, the displacement flux density is projected onto
the primary grid edges using
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It can be shown that the displacement flux density in (9)
also satisfies the discrete form of Gauss’s Law. Finally, the
field updates can be performed by computing the vector fields
normal to the primary or secondary grid faces using (2a) or
(2b), then project them onto the edges of the secondary or
primary grids using (4) or (9), respectively. By introducing the
correction terms in (4) and (9) it can be shown that second-
order accuracy of the algorithm is maintained, assuming that
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the time increment At satisfies the Courant stability criterion.
The exact stability criterion would require an eigenvalue
analysis of the combined update expressions in (2a), (2b), (4)
and (9) in [8]. Unfortunately, this will be problem dependent
due to the unstructured nature of the grid. Through numerical
experimentation, however, a relationship has been established
which provides an excellent estimate of the stability criterion
for tetrahedral, pentahedral and hexahedral elements

1

31
¢ sup [Zﬁ}

At < (10)

=1

where, c is the speed of light, and the ¢;(¢ = 1,3) are three
edges in each cell sharing a common vertex. This expression
provides an accurate estimate for the time step that is in general
within 10% of the actual stability criterion. It is observed from
(10) that the time step will be bound by the smallest edge
length in the model.

The greatest strength of the above technique is that it
is based on general, unstructured grids, and thus can be
applied to problems with complex 3-D geometries. Further-
more, this method is well suited for the large variety of
commercially available automatic numerical grid generation
software packages for modeling and meshing the geometry.
One disadvantage, however, is that since the grid is unstruc-
tured and irregular, the numerical grid must be stored (this
is not required for the regular grid-based FDTD method).
Second, it would appear that either a significant number of
floating point operations will be required during each time
iteration (e.g., to compute the area of each face, the unit
normals, the edge vectors, the weighting factors, etc.), or much
more memory will be needed to store most of these parameters.
In Section IV, techniques are introduced that minimizes both
the floating point operations and vastly reduces the memory
requirements of the generalized Yee-algorithm.

III. LuMPED LOADS

To accurately model hybrid and integrated planar mi-
crowave circuits, it is necessary to include lumped circuit
elements. Using general voltage-current relationships of
lumped circuit elements it is possible to model the interaction
of the fields with lumped circuits directly with Maxwell’s
equations.

From the generalized current concept [15], Ampere’s Law
is expressed as

j{ﬁ.dizfuducm (11)
C

where [ is the displacement current, I, is the conduction
current, and [I; is the lumped current through the lumped
element. The voltage along any primary grid edge of the model
will be locally approximated by the line integral of the electric
field along the edge. If the electric field is known at the present
time step, then the lumped current along the edge can be
simply expressed through the voltage-current relationship of
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the lumped element

(12)
P

P
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Consider the linear, passive elements R, (resistor), C; (capac-
itor), and I; (inductor). If each of these were placed along a
primary grid edge, the lumped current induced through these
elements would be expressed as
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Based on this relationship, discrete elements can be directly
incorporated into (2b), where, Il"+1/ z A,J_;“H/ 2. 4, for
the i-th edge.

IV. ENHANCING COMPUTATIONAL EFFICIENTLY

The generalized Yee-algorithm has the potential to be com-
putationally expensive and memory intensive. However, if it
is treated in the appropriate fashion, the algorithm can be
employed very efficiently. To this end, the generalized Yee-
algorithm can be thought of as a series of linear operations
acting on the fields that are normal to the primary and the
secondary grid faces. These linear operations can be expressed
in their discrete form simply as matrix-vector multiplications.
For example, consider (2a). The line integral can be expressed
as a sparse matrix. The :-th row of the matrix has identically
N, nonzero column elements. Since all zero row elements
have no contribution only the nonzero elements need be stored.
Subsequently, (2a) can be expressed as

by = bn - AhAecdn (14)

where b,, is the vector of magnetic fluxes normal to each
primary grid cell face, d,, is the vector of electric fluxes normal
to the secondary grid faces, Ay, is a sparse matrix representing
the line integral in (2a), and A.. is a sparse matrix of order
representing the projection operation in (9). Similarly

dn = Dedn - AeAhcbn (15)

where D, is a diagonal matrix derived from the self term in
(2b), A. is a sparse matrix representing the line integral in
(2b), and Ap, is a sparse matrix derived from the projection
operator in (4).

The number of nonzero entries Ap. and A.. will be de-
pendent upon the number of faces used in the interpolation in
(4) and (9), respectively. For example, from (4), there will be
NN, + 1 nonzero entries in each row of A;., where N, and
N, are dependent upon the local mesh characteristics. Each
row entry is then derived explicitly from (3)—(5). To this end,
the left-hand side of (3) can be represented by a 3 x 3 matrix
[A] times the vector unknown representing §i7j, where the
three rows of [A] represent the z,y, and z components of
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N P, N P, ,, and N P.;1,,» Tespectfully. Subsequently, the local
interpolated field is then solved as
Bi;-& B-Np
Bij-9|=[4""| B-Np, (16)
B;;-z B-Np_,,

Then, letting [C] = [A]7}, and § = 5,4 + s,§ + 8.2, it
follows that

wi 1B - & = |wil{c11ss + carsy + czs.1B - Np
+ [c1285 + caosy + c325.]B - NPl 5
Py, J} (17)

where the c;, represent the elements of [C]. The entry in
(17) weighting B - Np will contribute to the diagonal term
of Ap., and the entries weighting B-N p,, and B-N Pii1
will contribute to the off diagonal terms. Then summing over
all 7 and j in (4), each row entry in Aj. can be assembled. It is
noted that in any region where the grid is orthogonal , the off-
diagonal elements of A, will be zero, and the diagonal term
will be unity. This virtue can easily be exploited to conserve
memory.

The sparse matrices in (13) and (14) need only be computed
once and then stored using a compressed storage scheme.
Subsequently, each time iteration consists of a set of matrix-
vector multiplications, which are very computationally ef-
ficient and are easily parallelizable. A remaining issue 1is
the efficient construction of these matrices. This is accom-
plished by constructing the matrices on a cell-by-cell basis. To
this end, the secondary grid is never specifically constructed
since there is sufficient information to construct the matrices
Ae, An, D, A, and Ay from the primary grid cells alone.
Subsequently, the matrices can be assembled by scanning
through all the cells sequentially.

+ [c1382 + ca38y + 633Sz]B

V. NUMERICAL EXAMPLES

A computer program based on the generalized Yee-
algorithm has been implemented on the 512-node Intel
Delta Supercomputer located at the California Institute of
Technology. It has also been implemented on an iPSC/860
hypercube, JPL’s CRAY-YMP, an SGI Power Challenge and
an HP workstation (note that porting the code to these other
platforms only required changing the paths of I/O files). The
program was interfaced with a commercial CAD software
package (SDRC I-DEAS) to generate the circuit models and
the primary grid. When the circuits are situated in unbounded
regions, the discretization volume is truncated by planar
boundaries. A second-order accurate absorbing boundary
condition (ABC) based on the dispersive boundary condition
[16] is used to update the fields on the truncation boundary
walls, minimizing any nonphysical reflections (this results in
< —40 dB reflection error across the entire bandwidth). It is
noted that the mesh in the immediate vicinity of the exterior
boundaries must be orthogonal for this ABC to be stable.
This is done automatically by the software by extending an
orthogonal mesh out from the initial unstructured mesh created
by the automatic mesh generator, The mesh is then spatially
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Fig. 5. Cross section of unstructured mesh used to discretize the Wilkinson
power divider.
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Fig. 6. S-parameters of Wilkinson power divider computed using the gen-
eralized Yee-algorithm using an unstructured grid and an FDTD algorithm
using a regular orthogonal grid.

decomposed into contiguous subregions using the recursive
inertia partitioning algorithm [17] (this decomposition is done
in a manner that equally distributes the faces and edges of the
primary grid among all subregions). Once the simulation is
completed, one can extract data to compute the S-parameters,
characteristic impedances and propagation constants. The
computation of these parameters is done in the manner outlined
in [2]. One can also visualize the interaction of the electric and
magnetic fields in the device as a function of time. This alone
has been extremely helpful to identify sources of radiated
fields, coupling and resonances.

The computer program has been extensively validated
through comparison with other numerical methods and
published results. One such validation was the Wilkinson
power divider illustrated in Fig. 1. The power divider is
printed on a 15 mil TMM substrate (¢, = 3.25). The input
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TABLE 1
CPU TiMES RECORDED ON AN iPSC/860 FOR THE GENERALIZED YEE-ALGORITHM WILKINSON POWER DIVIDER

Platform 1 Proc. 2 Proc.

4 Proc.

8 Proc. 16 Proc. 32 Proc.

Gen, Yee 2427 s 1285 s

674 s

373 s 225 § 137 s

FDTD 2275 s 1194 s

680 s

404 s 230 s 151 s

and output ports are 50  (the strip width is 36 mil). For
isolation, a 100 € chip resistor is placed across the apex of
the power divider. This was modeled as a lumped load, as
described in Section III. The input port was excited with a
time varying Gaussian pulse with a bandwidth of 42 GHz.
The volume enclosing the power divider was discretized using
general hexahedron. A cross-section of the mesh in the plane
of the microstrip line is illustrated in Fig. 5. A time step of
0.14 ps was used for the simulation, and required only 3000
time steps.

The first row of the scattering matrix of the Wilkinson
power divider computed using the generalized Yee-algorithm
is plotted versus frequency in Fig. 6. These results were
obtained from a single time-domain simulation and an FFT
was used to compute the frequency domain signals. The two
output ports carry equal power, and are exactly in phase (not
shown here). These results are compared with results obtained
using a FDTD simulation based on an orthogonal regular
lattice (details of this program are described in [181).

The 3-D mesh modeling the Wilkinson power divider con-
sisted of 65824 hexahedron. This leads to roughly 412200
degrees of freedom. The CPU times required to perform 3000
iterations on an iPSC/860 are recorded in Table 1. These are
also compared with the CPU times required by the FDTD
algorithm. The FDTD lattice had a dimension of 107 x 81 x 23,
where dx = dy = 0.114681 mm, dz = 0.063 50 mm, and
dt = 0.14 ps. The FDTD algorithm was also executed for 3000
time iterations. For this small example, the FDTD algorithm
and the generalized Yee algorithm have comparable CPU
times. Interestingly, the generalized Yee algorithm has slightly
better speedups as the number of processors is increase. This
is due to the fact that as the problem size on each processor
gets smaller, the CPU speed per processor decreases for the
FDTD code as the vector lengths decrease [18]. On the other
hand, due to indirect addressing, the generalized Yee algorithm
is not as efficient on a pipelined processor, and the CPU
speed per processor is fairly constant as the problem size
decreases.

Fig. 7 illustrates a Gysel power divider (3 dB, in-phase).
This divider is tuned to 34 GHz and is designed to be quite
broad band. It is printed on a 10 mil Alumina substrate
(er = 9.9) and its ports are 50 € microstrip lines (a width
of 9.9 mil). Isolation is provided by two 100  branches
that are terminated by a 50 ) series resistance and a vertical
connection to the ground plane. The first row of the scattering
matrix over a broad band for this device using the generalized
Yee-algorithm is illustrated in Fig. 8. The 3-D mesh modeling
the Gysel power divider consisted of 353980 hexahedron,
leading to roughly 2 million degrees of freedom. The solution
required time 8,000 iterations (d¢ = 0.05 ps) which required
2,272 CPU-sec to solve on 16 processors of an Intel iPSC/860

Port 2

50 Q Chip

Resistors 6.6 mm

A
Y

5.69 mm

Fig. 7. Gysel power divider printed on a 10-mil Alumina substrate
(er = 9.9).

(1,256 CPU-sec on 32 processors). The results in Fig. 8 are
also compared to those obtained using the FDTD method. The
FDTD lattice had a dimension of 397 x 253 x 23, where dx =
0.0239165 mm, dy = 0.0247164 mm, dz = 0.04233333
mm, and d¢ = 0.05 ps. This was the largest mesh size
found that would provide an accurate model of the complex
geometry using an orthogonal grid. The FDTD algorithm was
also executed for 8,000 time iterations, and required 3,792
CPU-sec to solve on a 16 processor iPSC/860 (2,232 CPU-
sec on 32 processors), which is roughly twice the CPU time
as compared to the generalized Yee algorithm. Due to the
regularity of the FDTD grid, the modeling task was also much
more time consuming. Even though we have automated this
task, it is still difficult to realize an accurate description of
complex geometries, such as the Gysel power divider, using
a regular orthogonal grid. Furthermore. to accurately modecl
structures with highly detailed geometries, highly refined grids
become necessary, which impacts the global grid size of the
FDTD algorithm and subsequently the CPU time and memory
requirements.

VI. SUMMARY

In this paper, the generalized Yee-algorithm has been pre-
sented. The algorithm is an explicit time-marching method
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Fig. 8. S-parameters of Gysel power divider using the generalized
Yee-algorithm.

based on the discretization of Maxwell’s equations in their
integral form using unstructured and irregular dual gtids. This
algorithm is much more robust than the traditional FDTD
method in that it can be used to accurately model MMIC
devices with much more general geometries. Furthermore, by
treating the time-marching algorithm as a series of matrix vec-
tor multiplications, the algorithm is ideal for implementation
on high performance parallel computers.

It is anticipated that the generalized Yee-algorithm will be
a robust and computationally efficient tool for the analysis
of microwave monolithic integrated circuits, and can readily
exploit the scalable massively parallel high performance com-
puters of the future for the solution of electrically large and
dense MMIC devices.

APPENDIX A

In this Appendix, the average permittivity and conductivity
of a secondary cell face is computed. Consider the face,
defined as the surface S and bound by the contour C, of
a secondary cell of an irregular and unstructured grid, e.g.,
Fig. 9. It is assumed that the edge passes through the centroid
of the face and is tangential to the interface of bound-
ary shared by the four materials (e1,01),(£2,02), (€3,03),
and (eq,04). In discrete form, Ampie’s law is undefined
since the permittivity of the face is ambiguous as referenced
to the electric field passing through it’s centroid. Subse-
quently, the surface of integration can be decomposed to
four distinct surfaces, each with constant permittivity &;(¢ =
1,2,3,4). Thus in discrete form, Ampere’s law is expressed
as

4
3 I = ) -
ZI Eﬁ//eiE-ds+//aiE-ds _Zj{cﬁ-dz
S; S

1= i =1

1399

Fig. 9. Secondary cell face.

where, S; is the surface of each subarea that is bound by the
contour C;. Over each S;, we have

(Bt = Bp) - a( S5 As) + (Bt + By
N,
ﬁ(%Ai) =N Y (A2)
j=1

It is assumed that E{L -7 in each subcell (¢ = 1,2, 3,4) is tan-
gential to the boundary interface, then it can be approximated
that

Er - anE} hmEy anEr-a~E A (A3)
It is noted that this is in general a good approximation since
the numerical grid is constructed such that the edge through
the center of the secondary cell face must be tangential to the
boundary surface. Subsequently, it is assumed that the edges
extending above or below the boundary interfaces are close to
normal. Then, adding the four equations in (Al) results in

En+1 _ En . . A
(T) ~f(e1Ar + 242 + e3A43 + E4A4).Z
E’n-}-l E"n
+ ( ____.—2+ ) (o141 + 0242

A
+03A3+ {74144)2

B By - 1y (a4

where, A is the total face area. Subsequently, an average
permittivity and conductivity are introduced where

N, N,
eave=;Aisi / A, om=;Amz- / A (A9

Ne
where N, is the number of subregions and A = )_ A;.
i=1
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